Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(8): 6176-6185, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38359155

RESUMO

Nanoplastics from air pollutants can be directly inhaled into the alveoli in the lungs and further enter blood circulation, and numerous studies have revealed the close relation between internalized nanoplastics with many physiological disorders via intracellular oxidative stress. However, the dynamic process of nanoplastics-induced oxidative stress in lung cells under breath-mimicked conditions is still unclear, due to the lack of methods that can reproduce the mechanical stretching of the alveolar and simultaneously monitor the oxidative stress response. Here, we describe a biomimetic platform by culturing alveoli epithelial cells on a stretchable electrochemical sensor and integrating them into a microfluidic device. This allows reproducing the respiration of alveoli by cyclic stretching of the alveoli epithelial cells and monitoring the nanoplastics-induced oxidative stress by the built-in sensor. By this device, we prove that cyclic stretches can greatly enhance the cellular uptake of nanoplastics with the dependencies of strain amplitude. Importantly, oxidative stress evoked by internalized nanoplastics can be quantitatively monitored in real time. This work will promote the deep understanding about the cytotoxicity of inhaled nanoplastics in the pulmonary mechanical microenvironment.


Assuntos
Células Epiteliais Alveolares , Microplásticos , Alvéolos Pulmonares , Pulmão , Estresse Oxidativo
2.
Plant Dis ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381961

RESUMO

The Nai plum (Prunus salicina var. cordata cv. Younai) holds significance as an important deciduous fruit crop in China. In July 2023, symptoms of postharvest fruit rot were observed on Nai plum with a 10% disease incidence of harvested fruits in three supermarkets, located in Nanchang City, Jiangxi Province, China. Infected fruits displayed brown, circular lesions, accompanied by a transition in the surrounding peel color from cyan to red. To investigate the causal agent, small sections (3 to 4 mm2) from the periphery of ten infected fruits were subjected to surface sterilization using 75% ethanol for 30 seconds. Following sterilization, the samples were rinsed three times with sterilized distilled water, air-dried, and aseptically placed on potato dextrose agar (PDA) at 25 ℃ for 3 days. Isolated colonies were subcultured by hyphal tip transfer. Ten of the resulting 12 fungal isolates showed similar morphological characteristics. The colonies exhibited an initial white hue, gradually transitioning to gray, and featured short and thick aerial hyphae with an irregular colony margin. Microscopic examination revealed conidiogenous cells that were hyaline, aseptate, and narrowly fusiform. The conidia were measured 11.0 to 15.6 × 3.2 to 4.9 µm (x̅ = 13.5 ± 1.4 × 4.0 ± 0.4 µm, n = 30), and were hyaline and subcylindrical. The morphological characteristics were in accordance with those of the Botryosphaeria species (Crous et al. 2006). To identify the strain, two representative isolates, JFRL03-1792 and JFRL03-1793, were selected for further characterization. Amplification of nucleotide sequences from three regions (ITS, TEF1-a and TUB2) was conducted using the primer sets ITS5/ITS4, EF1-728F/EF1-986R, and BT2A/BT2B, respectively (Guo et al. 2023). The resulting sequences were deposited in GenBank under the accession numbers: OR418373 and OR418374 for ITS; OR424405 and OR424405 for TEF1-a; OR424411 and OR424412 for TUB2. A BLASTN homology search of the obtained sequences revealed a high similarity of 99%-100% to the ITS (AY236949, 511/513 nucleotides), TEF1-a (AY236898, 282/282 nucleotides), and TUB2 (AY236927, 431/431 nucleotides) sequences of Botryosphaeria dothidea CWM8000 (ex-type). Maximum likelihood analyses were performed for the combined ITS, TEF1-a, and TUB2 dataset using Phylosuite V1.2.2 (Zhang et al. 2020). The resulting phylogenetic tree indicated that the two representative isolates were clustered together with Botryosphaeria dothidea in a clade with 95% bootstrap support. Based on the comprehensive assessment of morphological and molecular data, the two isolates were conclusively identified as B. dothidea. To confirm pathogenicity, six healthy Nai plum fruits were surface sterilized with 75% ethanol and were subsequently wounded with a sterile needle. A 5-mm-diameter mycelial plug of the isolate JFRL03-1792, cultured on PDA at 25 ℃ for three days, was applied to the wound. Another set of six fruits was inoculated with sterile agar plugs as control. Following incubation in a climatic chamber at 25 ℃ and 80% relative humidity, the fruits were examined after 5 days. The experiment was repeated twice. The fruits inoculated with B. dothidea displayed typical rot symptoms, while the control fruits remained asymptomatic. In adherence to Koch's postulates, the fungus was successfully re-isolated from the inoculated fruits and confirmed as B. dothidea through morphological and molecular analysis. B. dothidea has previously been reported causing fruit rot on kiwifruit, winter jujube, and apple (Tang et al. 2012; Zhou et al. 2015; Marsberg et al. 2017; Xu et al. 2023). In addition, B. dothidea also reported causing Botryosphaeria canker disease on plum (Lin et al. 1994). But to our knowledge, this is the first documentation of B. dothidea causing postharvest fruit rot on plum in China. This discovery imparts critical insights into the management of this high-risk disease affecting plum in China.

3.
Nat Nanotechnol ; 19(4): 524-533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172432

RESUMO

Exposure to widely used inert fibrous nanomaterials (for example, glass fibres or carbon nanotubes) may result in asbestos-like lung pathologies, becoming an important environmental and health concern. However, the origin of the pathogenesis of such fibres has not yet been clearly established. Here we report an electrochemical nanosensor that is used to monitor and quantitatively characterize the flux and dynamics of reactive species release during the frustrated phagocytosis of glass nanofibres by single macrophages. We show the existence of an intense prolonged release of reactive oxygen and nitrogen species by single macrophages near their phagocytic cups. This continued massive leakage of reactive oxygen and nitrogen species damages peripheral cells and eventually translates into chronic inflammation and lung injury, as seen during in vitro co-culture and in vivo experiments.


Assuntos
Nanofibras , Nanotubos de Carbono , Oxigênio , Nanotubos de Carbono/química , Fagocitose , Macrófagos , Espécies Reativas de Oxigênio
4.
Plant Cell Environ ; 47(5): 1486-1502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38238896

RESUMO

For plant growth under salt stress, sensing and transducing salt signals are central to cellular Na+ homoeostasis. The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) complexes play critical roles in transducing salt signals in plants. Here, we show that CBL5, an ortholog of CBL4 and CBL10 in Arabidopsis, interacts with and recruits CIPK8/CIPK24 to the plasma membrane. Yeast cells coexpressing CBL5, CIPK8/CIPK24 and SOS1 demonstrated lesser Na+ accumulation and a better growth phenotype than the untransformed or SOS1 transgenic yeast cells under salinity. Overexpression of CBL5 improved the growth of the cipk8 or cipk24 single mutant but not the cipk8 cipk24 double mutant under salt stress, suggesting that CIPK8 and CIPK24 were the downstream targets of CBL5. Interestingly, seed germination in cbl5 was severely inhibited by NaCl, which was recovered by the overexpression of CBL5. Furthermore, CBL5 was mainly expressed in the cotyledons and hypocotyls, which are essential to seed germination. Na+ efflux activity in the hypocotyls of cbl5 was reduced relative to the wild-type under salt stress, enhancing Na+ accumulation. These findings indicate that CBL5 functions in seed germination and protects seeds and germinating seedlings from salt stress through the CBL5-CIPK8/CIPK24-SOS1 pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinação , Calcineurina/genética , Calcineurina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sementes , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
5.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2507-2517, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899118

RESUMO

Rapid economic development has led to significant changes in land use in the Guanzhong Plain urban agglomeration, which alters regional ecosystem service value (ESV). Based on the land use and driver data of the Guanzhong Plain urban agglomeration, we used the system dynamics (SD) model coupled with the mixed-cell cellular automata (MCCA) model to predict the subtle spatial and temporal changes of ESV within the land use unit in 2040 under the scenarios of natural development, economic development, ecological protection, and arable land conservation, to reveal the responses of ESV to the socio-economic evolution. We examined the impacts of land use change on ESV by using the sensitivity index. The results showed that land use transformation between 2000 and 2020 in the study area was mainly the conversion between arable land, forest, grassland, and the conversion of arable land to construction land. Due to increased forest and water, ESV increased slightly during this period. In 2040, compared with the ecological protection scenario, the proportion of forest in the economic development scenario decreased by 1.8%, and the construction land increased by 1.3%. During 2020-2040, under the economic development scenario, ESV showed a downward trend in the central and eastern regions but an upward trend under the arable land conservation scenario, with hydrological and climatic regulation contributing the most to ESV. Total ESV showed a decreasing trend except for the ecological conservation scenario. In the ecological protection scenario, land use change positively impacted ESV. In contrast, ESV had a negative response to land use change in other scenarios, with the greatest reduction in the economic development scenario. The research could provide new methods for multi-scenario land use simulation and ESV prediction and have scientific and practical significance for optimizing land space layout, land resource planning management, and sustainable development path strategy of urban agglomerations.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Florestas , Desenvolvimento Sustentável , Desenvolvimento Econômico
6.
Int J Biol Macromol ; 253(Pt 2): 126701, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673165

RESUMO

ABA signaling core components PYR/PYL, group A PP2C and SnRK2 play important roles in various environmental stress responses of plants. This study identified 14 PYR/PYL, 9 PP2C (A), and 10 SnRK2 genes from halophytic Eutrema. Phylogenetic analysis showed 4 EsPYR/PYL, 4 EsPP2C (A) and 3 EsSnRK2 subfamilies characterized, which was supported by their gene structures and protein motifs. Large-scale segmental duplication event was demonstrated to be a major contributor to expansion of the EsPYL-PP2C (A)-SnRK2 gene families. Synteny relationship analysis revealed more orthologous PYL-PP2C (A)-SnRK2 gene pairs located in collinear blocks between Eutrema and Brassica than that between Eutrema and Arabidopsis. RNA-seq and qRT-PCR revealed EsABI1, EsABI2 and EsHAL2 showed a significantly up-regulated expression in leaves and roots in response to ABA, NaCl or cold stress. Three markedly co-expression modules of ABA/R-brown, NaCl/L-lightsteelblue1 and Cold/R-lightgreen were uncovered to contain EsPYL-PP2C (A)-SnRK2 genes by WGCNA analysis. GO and KEGG analysis indicated that the genes of ABA/R-brown module containing EsHAB1, EsHAI2 and EsSnRK2.6 were enriched in proteasome pathway. Further, EsHAI2-OE transgenic Arabidopsis lines showed significantly enhanced seeds germination and seedlings growth. This work provides a new insight for elucidating potential molecular functions of PYL-PP2C (A)-SnRK2 responding to ABA and abiotic stresses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Cloreto de Sódio/metabolismo , Resposta ao Choque Frio , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo
7.
J Agric Food Chem ; 71(37): 13848-13856, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37669547

RESUMO

l-Cysteine is a valuable sulfur-containing amino acid with applications across a wide range of fields. Recently, microbial fermentation has emerged as a method to produce l-cysteine. However, cellular redox stress from high levels of l-cysteine is a bottleneck for achieving efficient production. In this study, we aimed to facilitate l-cysteine biosynthesis by modulating cellular redox homeostasis through the introduction of the natural antioxidant astaxanthin in Corynebacterium glutamicum. To achieve this, we first introduced an exogenous astaxanthin synthesis module in C. glutamicum. Then, an l-cysteine-dependent autonomous bifunctional genetic switch was developed to dynamically regulate the l-cysteine and astaxanthin biosynthesis pathway to maintain cellular redox homeostasis. This regulation system achieved high biosynthesis of astaxanthin, which significantly facilitated l-cysteine production. Finally, engineered strain Cg-10 produced 8.45 g/L l-cysteine and 95 mg/L astaxanthin in a 5 L bioreactor, both of which are the highest reported levels in C. glutamicum.


Assuntos
Corynebacterium glutamicum , Cisteína , Corynebacterium glutamicum/genética , Homeostase , Oxirredução
8.
Appl Environ Microbiol ; 89(9): e0090423, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768042

RESUMO

Sulfane sulfur, a collective term for hydrogen polysulfide and organic persulfide, often damages cells at high concentrations. Cells can regulate intracellular sulfane sulfur levels through specific mechanisms, but these mechanisms are unclear in Corynebacterium glutamicum. OxyR is a transcription factor capable of sensing oxidative stress and is also responsive to sulfane sulfur. In this study, we found that OxyR functioned directly in regulating sulfane sulfur in C. glutamicum. OxyR binds to the promoter of katA and nrdH and regulates its expression, as revealed via in vitro electrophoretic mobility shift assay analysis, real-time quantitative PCR, and reporting systems. Overexpression of katA and nrdH reduced intracellular sulfane sulfur levels by over 30% and 20% in C. glutamicum, respectively. RNA-sequencing analysis showed that the lack of OxyR downregulated the expression of sulfur assimilation pathway genes and/or sulfur transcription factors, which may reduce the rate of sulfur assimilation. In addition, OxyR also affected the biosynthesis of L-cysteine in C. glutamicum. OxyR overexpression strain Cg-2 accumulated 183 mg/L of L-cysteine, increased by approximately 30% compared with the control (142 mg/L). In summary, OxyR not only regulated sulfane sulfur levels by controlling the expression of katA and nrdH in C. glutamicum but also facilitated the sulfur assimilation and L-cysteine synthesis pathways, providing a potential target for constructing robust cell factories of sulfur-containing amino acids and their derivatives. IMPORTANCE C. glutamicum is an important industrial microorganism used to produce various amino acids. In the production of sulfur-containing amino acids, cells inevitably accumulate a large amount of sulfane sulfur. However, few studies have focused on sulfane sulfur removal in C. glutamicum. In this study, we not only revealed the regulatory mechanism of OxyR on intracellular sulfane sulfur removal but also explored the effects of OxyR on the sulfur assimilation and L-cysteine synthesis pathways in C. glutamicum. This is the first study on the removal of sulfane sulfur in C. glutamicum. These results contribute to the understanding of sulfur regulatory mechanisms and may aid in the future optimization of C. glutamicum for biosynthesis of sulfur-containing amino acids.


Assuntos
Corynebacterium glutamicum , Fatores de Transcrição , Fatores de Transcrição/genética , Corynebacterium glutamicum/genética , Cisteína , Enxofre , Aminoácidos
9.
Nat Metab ; 5(7): 1159-1173, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37337119

RESUMO

Increased expression of branched-chain amino acid transaminase 1 or 2 (BCAT1 and BCAT2) has been associated with aggressive phenotypes of different cancers. Here we identify a gain of function of BCAT1 glutamic acid to alanine mutation at codon 61 (BCAT1E61A) enriched around 2.8% in clinical gastric cancer samples. We found that BCAT1E61A confers higher enzymatic activity to boost branched-chain amino acid (BCAA) catabolism, accelerate cell growth and motility and contribute to tumor development. BCAT1 directly interacts with RhoC, leading to elevation of RhoC activity. Notably, the BCAA-derived metabolite, branched-chain α-keto acid directly binds to the small GTPase protein RhoC and promotes its activity. BCAT1 knockout-suppressed cell motility could be rescued by expressing BCAT1E61A or adding branched-chain α-keto acid. We also identified that candesartan acts as an inhibitor of BCAT1E61A, thus repressing RhoC activity and cancer cell motility in vitro and preventing peritoneal metastasis in vivo. Our study reveals a link between BCAA metabolism and cell motility and proliferation through regulating RhoC activation, with potential therapeutic implications for cancers.


Assuntos
Neoplasias , Humanos , Proteínas , Proliferação de Células , Cetoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Transaminases/metabolismo
10.
Water Res ; 231: 119629, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689882

RESUMO

Environmental pollution of antibiotic resistance genes (ARGs) has been a great public concern. Integrons, as mobile genetic elements, with versatile gene acquisition systems facilitate the horizontal gene transfer (HGT) and pollution disseminations of ARGs. However, little is understood about the characteristics of ARGs mediated by integrons, which hampers our monitoring and control of the mobile antimicrobial resistance risks. To address these issues, we reviewed 3,322 publications concerning detection methods and pipeline, ARG diversity and evolutionary progress, environmental and geographical distribution, bacterial hosts, gene cassettes arrangements, and based on which to identify ARGs with high risk levels mediated by integrons. Diverse ARGs of 516 subtypes attributed to 12 types were capable of being carried by integrons, with 62 core ARG subtypes prevalent in pollution source, natural and human-related environments. Hosts of ARG-carrying integrons reached 271 bacterial species, most frequently carried by opportunistic pathogens Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Moreover, the observed emergence of ARGs together with their multiple arrangements indicated the accumulation of ARGs mediated by integrons, and thus pose increasing HGT risks under modern selective agents. With the concerns of public health, we urgently call for a better monitoring and control of these high-risk ARGs. Our identified Risk Rank I ARGs (aacA7, blaOXA10, catB3, catB8, dfrA5) with high mobility, reviewed key trends and noteworthy advancements, and proposed future directions could be reference and guidance for standard formulation.


Assuntos
Antibacterianos , Integrons , Humanos , Integrons/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Genes Bacterianos , Poluição Ambiental
11.
Biosens Bioelectron ; 222: 114928, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36450163

RESUMO

Reactive oxygen species (ROS) and nicotinamide adenine dinucleotide (NADH) are important intracellular redox-active molecules involved in various pathological processes including inflammation, neurodegenerative diseases, and cancer. However, the fast dynamic changes and mutual regulatory kinetic relationship between intracellular ROS and NADH in these biological processes are still hard to simultaneously investigate. A dual-channel nanowire electrode (DC-NWE) integrating two conductive nanowires, one functionalized with platinum nanoparticles and the other with conductive polymer, was nanofabricated for the selective and simultaneous real-time monitoring of intracellular ROS and NADH release by mitochondria in single living MCF-7 tumoral cells stimulated by resveratrol. The production of ROS was observed to occur tenths of a second before the release of NADH, a significant new piece of information suggesting a mechanism of action of resveratrol. Beyond the importance of the specific data gathered in this study, this work established the feasibility of simultaneously monitoring multiple species and analyzing their kinetics relationships over sub-second time scales thanks to dual-channel nanowire electrodes. It is believed that this concept and its associated nanoelectrochemical tools might benefit to a deeper understanding of mutual regulatory relationship between intracellular crucial molecular markers during physiological and pathological processes as well as for evaluating medical treatments.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , NAD/química , Espécies Reativas de Oxigênio , Cinética , Resveratrol , Platina , Oxirredução
12.
J Am Chem Soc ; 144(22): 9723-9733, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35617327

RESUMO

Reactive oxygen and nitrogen species (ROS/RNS) are generated by macrophages inside their phagolysosomes. This production is essential for phagocytosis of damaged cells and pathogens, i.e., protecting the organism and maintaining immune homeostasis. The ability to quantitatively and individually monitor the four primary ROS/RNS (ONOO-, H2O2, NO, and NO2-) with submillisecond resolution is clearly warranted to elucidate the still unclear mechanisms of their rapid generation and to track their concentration variations over time inside phagolysosomes, in particular, to document the origin of ROS/RNS homeostasis during phagocytosis. A novel nanowire electrode has been specifically developed for this purpose. It consisted of wrapping a SiC nanowire with a mat of 3 nm platinum nanoparticles whose high electrocatalytic performances allow the characterization and individual measurements of each of the four primary ROS/RNS. This allowed, for the first time, a quantitative, selective, and statistically robust determination of the individual amounts of ROS/RNS present in single dormant phagolysosomes. Additionally, the submillisecond resolution of the nanosensor allowed confirmation and measurement of the rapid ability of phagolysosomes to differentially mobilize their enzyme pools of NADPH oxidases and inducible nitric oxide synthases to finely regulate their homeostasis. This reveals an essential key to immune responses and immunotherapies and rationalizes its biomolecular origin.


Assuntos
Nanopartículas Metálicas , Oxigênio , Homeostase , Peróxido de Hidrogênio , Nitrogênio , Fagossomos , Platina , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Oxigênio/química
13.
Front Plant Sci ; 13: 856163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574106

RESUMO

The ectopic expression of the EsMYB90 transcription factor gene from halophytic Eutrema salsugineum has been reported to enhance the level of anthocyanin and other flavonoid metabolites in transgenic tobacco. In this study, the wheat JW1 overexpressing EsMYB90 showed longer roots and higher fresh weight than that in wild type (WT) under salt stress. In addition, the transgenic wheat plants displayed significantly higher peroxidase (POD) and glutathione S-transferase (GST) activity, as well as markedly lower malondialdehyde (MDA) content than that of the WT during salt stress conditions. The analysis of histochemical staining and H2O2 level indicated that the accumulation of reactive oxygen species (ROS) was significantly lower in the roots of transgenic wheat plants compared to the WT under salt stress. Transcriptome analysis revealed that the EsMYB90 gene affected the expression of considerable amounts of stress-related genes that were involved in phenylpropanoid biosynthesis and antioxidant activity in transgenic plants subjected to NaCl treatment. Importantly, the significantly upregulated expression genes in transgenic wheat under salt stress were mainly associated with the antioxidative enzymes POD and GST encoding genes compared with the WT. Furthermore, EsMYB90 is suggested to bind with the MYB-binding elements of pTaANS2 and pTaDFR1 by dual luciferase assay, to activate the transcription of TaANS2 and TaDFR1 genes that are encoding key enzymes of anthocyanin biosynthesis in transgenic wheat plants. All the results indicated that, under salt stress, the EsMYB90 gene plays a crucial role in preventing wheat seedlings from oxidative stress damage via enhancing the accumulation of non-enzymatic flavonoids and activities of antioxidative enzymes, which suggested that EsMYB90 is an ideal candidate gene for the genetic engineering of crops.

14.
Front Genet ; 12: 770742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868259

RESUMO

Eutrema salsugineum can grow in natural harsh environments; however, the underlying mechanisms for salt tolerance of Eutrema need to be further understood. Herein, the transcriptome profiling of Eutrema leaves and roots exposed to 300 mM NaCl is investigated, and the result emphasized the role of genes involved in lignin biosynthesis, autophagy, peroxisome, and sugar metabolism upon salt stress. Furthermore, the expression of the lignin biosynthesis and autophagy-related genes, as well as 16 random selected genes, was validated by qRT-PCR. Notably, the transcript abundance of a large number of lignin biosynthesis genes such as CCoAOMT, C4H, CCR, CAD, POD, and C3'H in leaves was markedly elevated by salt shock. And the examined lignin content in leaves and roots demonstrated salt stress led to lignin accumulation, which indicated the enhanced lignin level could be an important mechanism for Eutrema responding to salt stress. Additionally, the differentially expressed genes (DEGs) assigned in the autophagy pathway including Vac8, Atg8, and Atg4, as well as DEGs enriched in the peroxisome pathway such as EsPEX7, EsCAT, and EsSOD2, were markedly induced in leaves and/or roots. In sugar metabolism pathways, the transcript levels of most DEGs associated with the synthesis of sucrose, trehalose, raffinose, and xylose were significantly enhanced. Furthermore, the expression of various stress-related transcription factor genes including WRKY, AP2/ERF-ERF, NAC, bZIP, MYB, C2H2, and HSF was strikingly improved. Collectively, the increased expression of biosynthesis genes of lignin and soluble sugars, as well as the genes in the autophagy and peroxisome pathways, suggested that Eutrema encountering salt shock possibly possess a higher capacity to adjust osmotically and facilitate water transport and scavenge reactive oxidative species and oxidative proteins to cope with the salt environment. Thus, this study provides a new insight for exploring the salt tolerance mechanism of halophytic Eutrema and discovering new gene targets for the genetic improvement of crops.

15.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445456

RESUMO

Flavonoids are representative secondary metabolites with different metabolic functions in plants. Previous study found that ectopic expression of EsMYB90 from Eutremasalsugineum could strongly increase anthocyanin content in transgenic tobacco via regulating the expression of anthocyanin biosynthesis genes. In the present research, metabolome analysis showed that there existed 130 significantly differential metabolites, of which 23 metabolites enhanced more than 1000 times in EsMYB90 transgenic tobacco leaves relative to the control, and the top 10 of the increased metabolites included caffeic acid, cyanidin O-syringic acid, myricetin and naringin. A total of 50 markedly differential flavonoids including flavones (14), flavonols (13), flavone C-glycosides (9), flavanones (7), catechin derivatives (5), anthocyanins (1) and isoflavone (1) were identified, of which 46 metabolites were at a significantly enhanced level. Integrated analysis of metabolome and transcriptome revealed that ectopic expression of EsMYB90 in transgenic tobacco leaves is highly associated with the prominent up-regulation of 16 flavonoid metabolites and the corresponding 42 flavonoid biosynthesis structure genes in phenylpropanoid/flavonoid pathways. Dual luciferase assay documented that EsMYB90 strongly activated the transcription of NtANS and NtDFR genes via improving their promoter activity in transiently expressed tobacco leaves, suggesting that EsMYB90 functions as a key regulator on anthocyanin and flavonoid biosynthesis. Taken together, the crucial regulatory role of EsMYB90 on enhancing many flavonoid metabolite levels is clearly demonstrated via modulating flavonoid biosynthesis gene expression in the leaves of transgenic tobacco, which extends our understanding of the regulating mechanism of MYB transcription factor in the phenylpropanoid/flavonoid pathways and provides a new clue and tool for further investigation and genetic engineering of flavonoid metabolism in plants.


Assuntos
Antocianinas , Brassicaceae/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Proteínas de Plantas , Plantas Geneticamente Modificadas , Antocianinas/biossíntese , Antocianinas/genética , Brassicaceae/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , /metabolismo
16.
Angew Chem Int Ed Engl ; 60(35): 19337-19343, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34121300

RESUMO

A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4-ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles-polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core-shell NWs with excellent conductivity, adjustable size, and well-designed properties. Nanoelectrodes manufactured with such core-shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells.


Assuntos
Nanotecnologia , Nanofios/química , Imagem Óptica , Compostos Organometálicos/química , Eletrodos , Humanos , Células MCF-7 , Tamanho da Partícula
17.
Environ Res ; 196: 110455, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33212131

RESUMO

This study investigated the treatment of 100-mg/L Norfloxacin (NOR) wastewater containing high concentrations of sulfate through a combination of electrolysis, sulfate-reducing up-flow sludge bed (SRUSB), and biological contact oxidation reactor (BCOR) treatments. Results revealed that after 62 h, the reaction system had processed over 97% of the NOR. Additionally, electrolysis with sodium sulfate as the electrolyte transformed 87.8% of the NOR but only 33.5% of the total organic carbon (TOC). In the SRUSB, the TOC and SO42- contents were simultaneously reduced by 87.4% and 95.6%, respectively, providing a stable environment to the BCOR. In the BCOR, 36.3% and 85.9% of the NOR and TOC were degraded. High-performance liquid chromatography-tandem mass spectrometry analysis identified three possible degradation pathways under the attack of -OH during electrolysis, including defluorination, piperazinyl ring transformation, and quinolone ring transformation. Furthermore, the Illumina HiSeq sequencing results demonstrated that the sulfate-reducing bacteria (represented by Desulfobacter and Desulfobulbus) in the SRUSB and the sulfate-oxidizing bacteria (mainly consisting of Gammaproteobacteria and Alphaproteobacteria) in the BCOR played important roles in carbon chain oxidation and benzene ring opening and thoroughly degraded the electrolysis products. Thus, this method effectively overcomes the incomplete degradation and low removal efficiency issues associated with single electrolysis or biological methods in traditional processes.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Eletrólise , Norfloxacino , Oxirredução , Sulfatos , Eliminação de Resíduos Líquidos
18.
BMC Plant Biol ; 20(1): 186, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345216

RESUMO

BACKGROUND: Anthocyanins contribute to coloration and antioxidation effects in different plant tissues. MYB transcription factors have been demonstrated to be a key regulator for anthocyanin synthesis in many plants. However, little information was available about the MYB genes in the halophyte species Eutrema salsugineum. RESULT: Here we report the identification of an important anthocyanin biosynthesis regulator EsMYB90 from Eutrema salsugineum, which is a halophyte tolerant to multiple abiotic stresses. Our phylogenetic and localization analyses supported that EsMYB90 is an R2R3 type of MYB transcription factor. Ectopic expression of EsMYB90 in tobacco and Arabidopsis enhanced pigmentation and anthocyanin accumulation in various organs. The transcriptome analysis revealed that 42 genes upregulated by EsMYB90 in 35S:EsMYB90 tobacco transgenic plants are required for anthocyanin biosynthesis. Moreover, our qRT-PCR results showed that EsMYB90 promoted expression of early (PAL, CHS, and CHI) and late (DFR, ANS, and UFGT) anthocyanin biosynthesis genes in stems, leaves, and flowers of 35S:EsMYB90 tobacco transgenic plants. CONCLUSIONS: Our results indicated that EsMYB90 is a MYB transcription factor, which regulates anthocyanin biosynthesis genes to control anthocyanin biosynthesis. Our work provides a new tool to enhance anthocyanin production in various plants.


Assuntos
Antocianinas/biossíntese , Brassicaceae/genética , Genes de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Brassicaceae/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Fatores de Transcrição/fisiologia
19.
Chem Sci ; 11(33): 8771-8778, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34123129

RESUMO

Mitochondria are the powerhouse of cells, and also their suicidal weapon store. Mitochondrial dysfunction can cause the opening of the mitochondrial permeability transition pore (mPTP) and nicotinamide adenine dinucleotide (NADH) release from mitochondria, eventually leading to the disruption of energy metabolism and even cell death. Hence, NADH is often considered a marker of mitochondrial function, but in situ monitoring of NADH release from mitochondria in single living cells remains a great challenge. Herein, we develop a functionalized single nanowire electrode (NWE) for electrochemical detection of NADH release from intracellular mitochondria by modifying conductive polymer (poly(3,4-ethylendioxythiophene), PEDOT)-coated carbon nanotubes (CNTs) on the surface of a SiC@C nanowire. The positively charged PEDOT facilitates the accumulation of negatively charged NADH at the electrode surface and CNTs promote electron transfer, thus endowing the NWE with high sensitivity and selectivity. Further studies show that resveratrol, a natural product, specifically induced NADH release from mitochondria of MCF-7 cancer cells rather than non-cancerous MCF-10 A cells, indicating the potential therapeutic effects of resveratrol in cancer treatment. This work provides an efficient method to monitor mitochondrial function by in situ electrochemical measurement of NADH release, which will be of great benefit for physiological and pathological studies.

20.
Neural Regen Res ; 8(31): 2932-41, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25206614

RESUMO

Hypobaric hypoxia can cause severe brain damage and mitochondrial dysfunction, and is involved in hypoxic brain injury. However, little is currently known about the mechanisms responsible for mitochondrial dysfunction in hypobaric hypoxic brain damage. In this study, a rat model of hypobaric hypoxic brain injury was established to investigate the molecular mechanisms associated with mitochondrial dysfunction. As revealed by two-dimensional electrophoresis analysis, 16, 21, and 36 differential protein spots in cerebral mitochondria were observed at 6, 12, and 24 hours post-hypobaric hypoxia, respectively. Furthermore, ten protein spots selected from each hypobaric hypoxia subgroup were similarly regulated and were identified by mass spectrometry. These detected proteins included dihydropyrimidinase-related protein 2, creatine kinase B-type, isovaleryl-CoA dehydrogenase, elongation factor Ts, ATP synthase beta-subunit, 3-mercaptopyruvate sulfurtransferase, electron transfer flavoprotein alpha-subunit, Chain A of 2-enoyl-CoA hydratase, NADH dehydrogenase iron-sulfur protein 8 and tropomyosin beta chain. These ten proteins are all involved in the electron transport chain and the function of ATP synthase. Our findings indicate that hypobaric hypoxia can induce the differential expression of several cerebral mitochondrial proteins, which are involved in the regulation of mitochondrial energy production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...